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Abstract-The effects of stable stratification on the steady 1amina.r flow of a viscous fluid in a rotating 
spherical annulus are investigated. Three rotational configurations are discussed: inner sphere rotating, 
outer sphere at rest; inner sphere at rest, outer sphere rotating; and both spheres rotating in opposite 
directions. The calculations include the primary and secondary circulations, the temperature distribution, 
and the heat-transfer characteristics of the flow. It is shown that the buoyancy forces are effective in reducing 

the intensity of the secondary circulation, and in one case cause a new circulation pattern to appear. 

NOMENCLATURE 

specific heat at constant pressure; 
differential operator ; 
angular velocity expansion function; 
stream function expansion function; 
gravitational acceleration; 
Grashof number g,,B( z - T,)R$* ; 
temperature expansion function; 
thermal conductivity; 
nth order Legendre polynomial; 
Prandtl number pC,jk; 

local heat flux; 
total heat flux; 
local conduction heat flux; 
total conduction heat fiux; 
dimensionless radial coordinate; 
radial coordinate ; 
Reynolds number R$q,/v; 

inner sphere radius; 
outer sphere radius;’ 
temperature distribution; 
inner sphere temperature; 
outer sphere temperature; 
radial velocity component ; 
latitudinal velocity component ; 
azimuthal velocity component ; 
Laplacian operator. 

Greek symbols 

; 
coefficient of volume expansion; 
dimensionless temperature distribution; 

?> radius ratio RI jR, ; 
8, co-latitude ; 
P. absolute viscosity; 

/A angular velocity ratio w2/wI ; 
V, kinematic viscosity; 

azimuthal angle ; 
stream function ; 

0, rotation function; 

6JO1 characteristic time scale ; 

WI, inner sphere angular velocity ; 

02, outer sphere angular velocity; 

n, angular velocity function. 

1. INTRODUCIION 

THE FLOW in a rotating spherical annulus has been 
extensively studied over the past three decades because 
of the many geophysical applications. The earliest 
workers (Howarth Cl], Proudman [2], Greenspan [3], 
and Carrier [4]) were primarily interested in the effects 
of rotation, and employed methods which were 
generally of a singular perturbation or boundary-layer 
character.Their descriptions of the important dynami- 
cal mechanisms were subsequently confirmed by 
Pearson’s [S] numerical calculations. In particular, 
Proudman’s [2] cylindrical shear layer was shown to 
exist not only for nearly rigid rotations but also when 
one sphere rotates while the other remains at rest. 
Later Munson [6] did a rather detailed numerical 
study of the steady flows for all Reynolds numbers up 
to transition. He also examined the stability of these 
flows [7]. 

Progress on the problem of stratified rotating flows 
in this geometry has followed a similar pattern. 
Barcilon and Pedlosky [8] constructed a linear theory 
for cylindrical geometries and clarified the role of the 
Ekman boundary layer in the limits of weak and 
strong stable stratification. Later they presented a 
unified theory [9] which included intermediate stratifi- 
cations. Their analysis demonstrated that the stably 
stratified flows could be organized according to the 
value of the stratification, defined as the product of the 
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Prandtl number and the stratification parameter. For 
example, values of the stratification greater than the 

square root of the Ekman number result in flows for 
which the Ekman layers are weak or absent. Pedlosky 
[lo] analyzed the stably stratified problem in the 
spherical annulus using a linearized theory, and poin- 
ted out that the effective stratification increases as the 

equator is approached because the local rotation 
depends on the latitude. Further work on the stratified 

problem in cylindrical geometries has been reported 

by Allen [ 1 I. I?]. including numerical solutions to the 
nonlinear problem [I.?]. The latter work explored the 
effects of different boundary conditions on flows with 

strong stable stratification and verified the predictions 
of the linear theories. Douglass, Munson, and Shaugh- 
nessy [Id] explored the unstably stratified flows in 

the rotating spherical annulus using both perturbation 

and numerical methods. A wide variety of rotational 
and geometrical configurations were examined, and 

the unstable stratification was shown to have a 
profound influence on the meridional circulation. The 
heat-transfer characteristics of these flows were also 

discussed. 
The work presented here was motivated by the 

desire to explore the effects of geometry and non- 

linearities on the stably stratified problem in the 

rotating spherical annulus. Solutions are presented for 
three different configurations: inner sphere rotating, 

outer sphere at rest: inner sphere at rest, outer sphere 
rotating; and both spheres rotating, but in opposite 

directions. The results include the primary and secon- 
dary velocity fields. the temperature distribution. and 
the heat-transfer characteristics of the flow. In all ofthe 
flows considered, the stable stratification retards the 

mechanically driven circulation as the stratification 

increases. In one flow, however, intermediate stratifi- 

cations are characterized by an additional secondary 
circulation which is opposite to the circulation in- 
duced by the rotation. The strength of this new 
secondary motion grows to a value comparable to the 

FIG. 1. Flow geometry. 

primary motion then begins to decay as the stratiti- 
cation increases. An explanation of this phenomenon 
is given in terms of the spin-up by the mechanical 

circulation of hot fluid trapped in a buoyancy layer. In 
all cases considere’d, the heat transfer acrcw tire: 

annulus decreases with increasing stratification. hilt 
the precise rate of this decrease varies depending on thy 

rotational configuration. 

2. ANALYSIS 

We consider the motion of a Newtonian fluid m ;r 

concentric spherical annulus as shown in Fig. i. The 

rigid bounding spheres rotate steadily at rates ff~r and 
w2 about a common axis. A positive rotation rate 

denotes clockwise rotation looking in the direction 
indicated on the polar axis. Both the magnitude and 

sign of w, and w2 are arbitrary; if (81~ and CJ~~ differ rn 
sign, the spheres are counter-rotating. The inner and 
outer spheres have uniform temperatures ‘IfI and i:: 
respectively, and a uniform gravitational force ,)I’ 
magnitude go is assumed to act towards the center <I! 
the spheres. 

The motion is measured in spherical coordinates (I’. 
0. 4) fixed in space, with (V,. Vi,, y,>) the corresponding 
velocity components. The angular coordinate 0 is 

measured from the polar axis; 4 is the azimuthal angle. 
The flow is assumed to be steady, independent of $I. 
and symmetric about 0 = nC? (the equatorl. lI1~ 
solutions are valid in the annular region R, .s r c_ K,. 
0 6 fl < x, and 0 < 4 < 271 for arbitrary radii R, and 
R, of the inner and outer spheres. Due to the assumed 
symmetries in the problem, the results are presented in 

the upper portion of a meridian plane only. 
The dimensionless equations of motion wrthrn the 

Boussinesq approximation are conveniently for-- 
mulated in terms of a stream function tj. an angular 
velocity function R, and a temperature function C Cl q] : 

and 

Here Re = R&,/v is the Reynolds numher. (+ 1. 
g&T, - T,)R:/v’ is the Grashof number, and Pr = 
pC,/k is the Prandtl number. The Ekman number E 
is identical to the inverse Reynolds number l/R<>. while 
the stratification parameter S is equal to Gr,‘Rr” The 
fluid properties are the kinematic viscosity v. the absolute 
viscosity /L, the coefficient of thermal conductivrty 1%. 
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the specific heat at constant pressure C,, and the 
coefficient of thermal expansion p. The non- 
dimensionalization employs R,, 00 I, and (T, - Tl) as 
the characteristic length, time, and temperature scales. 
If oZ = 0 then w0 = wl, otherwise w0 = w2. 

The dimensional flow variables are defined by the 
relations 

Rw% 
2 Oae 

v,=---- 
r2 sin 6 

ROl@ 
2 Oar 

y,= -___ 
rsin8 (4) 

R2ooQ 
V$ = __ 

rsinl? 

and 

T= T,s-(T,-T,)I. 

The various operators are: 

a2 i a2 a D2=pfr2 @-COte;jB 
( > (5) 

b” = p(p) 
and 

V2=~~~(,2~)+cscR~(sin~~)~. 

The boundary conditions on the flow are that the 
fluid temperature equals the wall temperature at the 
spherical boundaries, and that the fluid velocity at the 
boundaries equals the velocity of the boundaries. In 
terms of the dimensionless variables these conditions 
are 

i(rl> 0) = 0, i(1, 0) = 1 

rL(~,ei=)(l,e)=~(s,e)=~(l,e)=0 
(6) 

and either 

a(~, 0) = q2 sin2 f3, a(l, f3) = p sin2 13(w, = or), 

or 

n(r), 0) = (q2/b) sin’ 0, n(l, 0) = sin’ tY(o, = 02). 

-The dimensionless parameters q and j which appear in 
these expressions are the radius ratio of the spheres q 
= RJR,, and the angular velocity ratio & = w&i. 

The results are represented by plots of the stream 
function II/, the temperature function [, and the 
dimensionless rotation o. The rotation is defined in 
terms of the angular velocity function by 

0 
w=-------. 

r2 sin2 19 (7) 

The dimensional value of the azimuthal velocity Vs is 

V, = R,w,wr sin 8. (8) 

Lines of constant $ define the secondary flow only. 
To obtain a complete picture of the motion of a fluid 
particle, the azimuthal velocity component must also 
be considered. In a typical case, the particle path is a 

spiral on the surface of a torus in the spherical annulus. 
The temperature distribution in the annulus is 

represented by plots of the temperature function c. 
Lines of constant [ are related to the isotherms by 
equation (4). For example, the line c = 0.2 represents a 
temperature which exceeds the inner cylinder tempera- 
ture by 20% of the overall temperature difference (T2 

-78. 
The heat-transfer characteristics of the flow field are 

represented by the local wall heat flux q, non- 
dimensionalized by the conduction heat flux qc. This 
ratio is evaluated on the inner and outer spheres and 
plotted as a function of 0. A measure of the overall heat 
transfer is obtained by integrating the local heat flux 
over either ofthe spherical surfaces. This total heat flux 
Q is given in the form (Q/Q,- l), which represents the 
fractional increase in the total heat transfer attribut- 
able to convection. Here Q, is the total heat transfer 
predicted by the simple conduction solution. Compar- 
ing the values of Q on the inner and outer spheres is a 
convenient check on the consistency of the numerical 
technique. For a steady flow in the absence of viscous 
dissipation these values should be identical. 

Numerical solutions to the equations of motion 
were found using the method of partial spectral 
expansions [15]. Only the general outline of this 
procedure will be described here since further details 
can be found elsewhere. The dependent variables are 
assumed to have expansions of the form 

n(r, (3) = sin’ 0 : P,(B)f,(r), 
n=O 

$(r, 6) = sin2 0 2 P,(6)g,(r), (9) 

and 

n=O 

The expansion functions P”(0) are Legendre poly- 
nomials of the first kind of order n. The sin2 0 factor in 
the expansions is chosen to simplify the boundary 
conditions stated in (6). To complete the solution 
method, the expansions (9) are substituted into the 
equations of motion, and orthogonality conditions are 
applied. This reduces the original partial differential 
equations to ordinary differential equations. The re- 
sulting boundary-value problem is solved numerically. 

3. RESULTS 

Calculations were made for three different cases 
corresponding to angular velocity ratios ci = 0, co, and 
- l/3. The Prandtl and Reynolds numbers are 1 and 
lo2 respectively. The results are organized according 
to the value of the Grashof number which varied 
between zero (no buoyancy) and 5 x 10’. These values 
lead to stratification parameters in the range 0 < S 
< 50. Values of S greater than 0.1 represent strong 
stable stratification according to Barcilon and 
Pedlosky’s [9] criteria. In the discussionthat follows 
the streamlines, isotherms, and local heat flux for each 
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configuration are described separately. A final section 
compares the dependence of the total heat flux on the 

degree of stratification. 

(a) The cuse p =- 0 
For p = 0 the inner sphere is rotating steadily while 

the outer sphere is at rest. The meridional circulation 

pattern for Gr = 0 is counterclockwise. as shown in 
Fig. 2. As a result of increasing thermal stratification a 

clockwise circulation pattern appears at the outer edge 

of the annulus. The first evidence of this new con- 
vection cell appears at a Grashof number of 2 x IO&, 

FIG. Streamlines for fi = 0, Gr = 0. Values shown are 10’ 
times &. 

which corresponds to a stratification of 2 in the theory 
of Barcilon and Pedlosky [9]. Below this stratification. 

all fluid in the annulus circulates counterclockwise. A 
slight increase in the stratification causes the for- 

mation of a very thin layer of fluid of opposite 
circulation near the outer sphere. This layer extends 

over all latitudes and initially has a depth of about I”,, 
of the gap. As the Grashof number (and stratification) 

increase, the new circulation cell increases in strength 
and size. Figure 3 shows the circulation pattern at a 
stratification of 45, at which value the clockwise 
circulation is at its maximum strength. Further in- 

creases in the stratification result in continual de- 
creases in the strength of both convection cells. 

FIG. 3. Streamlines for c = 0, Gr = 4.5 x 10’. Values shown 
are lo5 times *. 

This behavior, which has not been described before. 
appears to be a feature of this particular rotational 
configuration. With the outer sphere at rest, fluid near 
this sphere feels a very weak primary motion as 
cvidcnced by the angular velocity contours of Fig. 4 

0 

FIG. 4. The UI distribution for li = i!. (7~ := 4.5 x 10’ 

For strong stable stratification, buoyancy forces will 
tend to resist radial motions of this fluid, causing it to 

be trapped near the outer sphere The rotationally 
driven meridional circulation apparently controls the 
circulation of this trapped buoyancy layer through 

simple shear resulting in an opposite circulation. It 
would be interesting to test this hypothesis by examin- 
ing the spin-up of this steady flow from a state of stable 
stratification with the fluid at rest. 

Although the buoyancy forces produce a remark- 
able change in the meridional flow field, the isotherms 
are relatively unaffected. In the forced convection case 
(Gr = 0) the temperature distribution is similar to the 
simple conduction solution. The maximum difference 
between the two distributions is 6”;, of ( T2 - Tl). As the 

Grashof number increases to Gr -- 4.5 x 10’ this differ- 
ence decreases to 0.5:;, of ( T2 - T, ). In both flows the 
largest differences occur midway in the gap near the 
north pole. The local wall heat flux for this flow is 
shown in Fig. 5 for Gr = 0. The values of y/q, greater 
than unity on the northern half of the inner sphere 
reflect the convection of warm fluid to that area by the 
secondary circulation. As the fluid proceeds along the 
inner sphere towards the equator its temperature 
gradually drops, reducing the local heat transfer at the 

wall. The heat flux falls below the conduction value 
near the equator because of the deflection of the 
isotherms by the circulation. Similar reasoning can be 
used toexplain the heat flux values on the outer sphere. 
As the Grashof number increases. the local heat Aux 
approaches the conduction value and becomes in- 
distinguishable from it for Gr = 4.5 x 105. 

For p = ,x the outer sphere rotates steadily while 
the inner sphere is at rest. The circulation pattern 
established by the rotation remains essentially un- 
changed for Grashof numbers as large as 5 Y IO’. 
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FIG. 5. Local heat flux for p = 0, Gr = 0. 
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FIG. 6. Streamlines for p = co, Gr = 0. Values shown are 10’ 
times $. 
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FIG. 7. Streamlines for @ = co, Gr = 2.5 x 105. Values shown 
are lo5 times *. 

Figures 6 and 7 show the streamlines for Gr = 0 and 
Gr = 2.5 x 10’ respectively. Figure 6may be compared 
with Pearson’s [5] finite difference solution as given by 
Fig. 3 of his paper. The excellent agreement confirms 
the basic accuracy of the spectral method used in these 
calculations. As the stratification increases the in- 
tensity of the circulation is reduced but there is little 
change in the basic circulation pattern. Figure 8 shows 
the angular velocity distribution in the annulus for Gr 

= 0. The most interesting feature of this distribution is 
the character of the contours near the equator. We see 
that Proudman’s [2] cylindrical shear layer is present 
even though the Reynolds number is rather low. Many 

0 

FIG. 8. The w distribution for/i = co, Gr = 0. 

w 

FIG. 9. The w distribution for fi = m, Gr = 2.5 x 105. 

investigators have exploited this characteristic by 
constructing simple cylindrical laboratory models of 
geophysical flows. While this is always valid in the zero 
buoyancy limit, Fig. 9, which shows the rotation 
contours for Gr = 2.5 x 105, demonstrates that stable 
stratification destroys this shear layer at low Reynolds 
numbers. 

In the present configuration, as in the previous one, 
the temperature distribution is similar to that given by 
the conduction solution. In the forced convection case 
(Gr = 0), the largest difference in the two distributions 
is 12% of (T. - T1). This is larger than the value found 
for the previous rotational configuration because the 

H.M.T.-F 



1256 E. J. SHACGH~ESSY and R. W. DOVGL.ASS 

secondary circulation is stronger, As the Grashol 

number increases, buoyancy forces retard the circula- 

tion and the temperature distribution approaches the 
conduction distribution. For Gr =2.5 x 105, the differ- 
ence is down to 1.57:. The local wall heat flux, shown 

in Fig. 10 for Gr =0 also approaches the conduction 
heat flux as the Grashof number increases. 

FIG. Il. Streamlines [or li= - 1 3. C;r. =O. Values shown are 
IO’ times $ 

FI(;. 12. Streamline for fi = - t :?I. Gr = i x 10’. VdUeS 
shown are 104 times i. 

(c) The case p = - 113 

In the last configuration studied, the inner sphere 
rotates three times as fast as the outer sphere and in the 
opposite direction. The shear forces established by the 
differential rotation act in opposite directions at each 
boundary, resulting in a secondary motion consisting 

of a pair of counter-rotating eddies. This circulation 

pattern is illustrated in Fig. 1 I for 6 = 0. and in Fig. 

12 for Gr = 1 x IO”. In comparison to the previous 

configurations, the buoyancy forces are not as effective 
in retarding the circulation. The clockwise motion is 

actually enhanced by the buoyancy forces for Grashof 
numbers less than 3 x 105, which is the largest value for 

which calculations were made. The buoyancy forces do 

retard the counterclockwise circulation but to a lesser 
degree than seen earlier. The angular velocity distri- 
bution for Gr = 1 x lo5 is shown in Fig. 17. 

The temperature distribution m this case is agam 

similar to the conduction distribution. For (;I. = 0 the 
differences in the two distributions are 4”,;, of ( Tz -- 7; ) 
near the north pole, and 7”,; of (T2-- T,) near the 
equator. The region near the north pole contains fluid 

which is warmer than conduction temperatures, while 
near the equator the fluid is cooler. As the Grashof 

number increases, these differences also decrease, but 
at a slower rate than noted earlier. For example, for Gr 
= 1 x 105, the temperature differences are 42, near the 
north pole (but over a smaller region) and 3:~; near the 
equator. The local wall heat flux for this configuration 
is shown in Fig. 14. The uppermost figure is for Gr = 0 

and the lower figure is for Gr = 1 x 105. The local heat 
flux values on the outer sphere clearly reflect the 
enhanced circulation of the clockwise eddy located 
near the outer sphere. The values along the inner 
sphere also demonstrate that this particular con- 
figuration is relatively unaffected by stable stratifi- 

cation. 
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FIG. 14. Local heat flux for p = -l/3, (a) Gr = 0, (b) Gr = 1 x 10’. 

(d) Heat transfer over the rate calculated for conduction only. In the 
The heat-transfer characteristics of all three con- forced convection limit (Gr = 0) the value of (Q/Q, 

figurations are summarized in Fig. 15. This plot shows -1) differs for each configuration according to the 
the total heat flux across either sphere as a function of effectiveness of the secondary circulation. These values 
the Grashof number. The quantity (Q/Q,- 1) repre- are 8.1 x 10-q 1.99 x 10m2, and 1.85 x lo-‘, for p = 0, 
sents the fractional change in the total heat transfer co, and-l/3 respectively [16]. Ofmost interest in this 

‘o-‘--7 

,655 
IO3 104 IO5 IO6 

Gr 

FIG. 15. Dependence of total heat flux on the Grashof number. 
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figure is the rate at which the total heat flux decreases 
with increasing Grashof number. The case of counter- 
rotating spheres (,i = - 13) shows significantly less 

rate of decrease in the heat-transfer rate than the other 
two configurations. This is not surprising in view of the 

resistance of this particular flow to the retarding action 
of the buoyancy forces. 

The effects of strong stable stratification on the 
steady laminar flow of a viscous fluid in a rotating 

spherical annulus have been investigated. Results are 
presented for three rotational configurations at a 

moderate rotation rate. The primary and secondary 
circulation patterns. the temperature distribution. and 

the heat-transfer characteristics of each flow are 

described. In all three cases, the buoyancy forces 
inhibit the circulation resulting from the differential 
rotation of the spheres. and reduce the overall heat 
transfer. For the case of a rotating inner sphere with 

the outer sphere at rest. the buoyancy forces generate a 
clockwise circulation near the outer sphere. The 
strength of this motion is comparable to that of the 
rotationally driven circulation for intermediate Gra- 

shof numbers. In the second configuration studied 

(inner sphere at rest, outer sphere rotating) the buoy- 
ancy forces retard the secondary circulation without 
distorting it to any great degree. The primary Row field 
described by the rotation LI) is significantly distorted by 

buoyancy forces. As the Grashof number increases the 
rotation contours change near the equator. The cyl- 

indrical shear layer which exists at Crr = 0 is destroyed 
as the Grashof number increases. The last con- 

figuration studied (counter-rotating spheres) proved 
to be more resistant to the retarding influence of the 
buoyancy forces than the previous two cases. This is 

reflected in the relationship between the overall heat 

transfer and the Grashof number. The overall heat- 
transfer rate for the Row between counter-rotating 
spheres falls off less sharply with increasing Grashof 

number. 

ilckrloH,ledyr,nents~The support of National Science Foun- 
dation Grant ENG 75-18398 and the Engineering Research 
Center. University ofNebraska Lincoln for this research has 
been appreciated. 

I. 

2. 

.:. 

4. 

5. 

6. 

7. 

x. 

9. 

IO. 

I I. 

I?. 

13. 

14. 

15. 

16. 

REFEREWXS 

1.. Howarth. Note on the boundar) layer on a ~otanng 
sphere. Phil. Msg. 42. 1308 15 ( 195 1 I. 
I. Proudman, The almost rigid rotation of viscous ftnd 
between concentric spheres. .1. Florid M&I. 1. 505 516 
I 19561. 
H. P. Greenspan, On the transient motion of a contamcd 
rotating fluid. J. Fluid Much. 21. 673 696 (1964). 
G F. Carrier, Some effects of stratification and geometry 
in totatingfluids. J. Fluid Mech. 23, 145 172 (1965). 
C. E. Pearson, A numerical study of the time-dependent 
viscous Row between two rotating spheres, d. F/u& M&f. 
28. 323 -336 11967). 
B. R. Munson and’D. D. Joseph. VISCOUS mcompressible 
llow between concentric rotating spheres. Part 1. Basic 
Il<,\C. .I. FlItid .1fW/l. 49. ‘89 103 (I 97 1 ) 
B. R. Munson and D. D. Joseph, Viscous incompressible 
fiou between concentric rotating spheres. Part 2, Hy- 
drodynamic stability. /. Fluid Mwh. 49, 305-318 11971). 
V. Barcilon and J. Pedlosky. Lineary theory of rotating 
stratified fluid motions. J. Fluid Mrch. 29, I- 16 (1967). 
\‘. Barcilon and J. Pedlosky. A unified linear theory of 
homogeneous and stratified rotating fluids. J. Fluid 
.24<& 29. 609 62 1 ( 1967 1. 
J. Pedlosky, Axially symmetric motion of a stratified 
rotating fluid in a spherical annulus of narrow gap, .I. 
F/aid Mech. 36,401-415 (1969). 
J. S. Allen. The effect of weak stratification and geometry 
on the steady motion of a contained rotating fluid. J 
I:luid Me& 43. 129~ 144 11970) 
J S. Allen. Upwelling of a stratified Ruid m a rotaimg 
annulus: steady state. Part I. Lineary theory. .1. Fluit! 
.i,f<,c.lt. 56. 429m 445 (1972). 
J. S. Allen. Upwelling of a stratitied fluid in a rutatmg 
annulub: steady state. Part 2. Numerical solutions. J. 
Fiuid Xlcsh. 59. 337 36X I 1973 t. 
R. W. Douglass, B. R. Munson and F. J. Shaughnessj. 
( ombined convection in a rotating spherical annulus. 
l),r .l. Hmr and Mm Trar~sjtir. to be published. 
E J. Shaughnessy. 1. R. Custer and R. W. Douglass, 
Partial spectral expansions for problems in thermal 
convection. .I. Hr~ut Trunsfer. to he published. 
R. W. Douglass. Combined natural and forced thermal 
convection in a rotating spherical annulus. Ph.D. Disser- 
tation. Dept. of Mechanical Engineering and Materials 
‘+i~ncc. Duke liniversity 11975) 

L‘EFFET DE LA STRATIFICATION STABLE SUR LE MOUVEMEN’I 
DANS UN ESPACE ANNULAIRE SPHERIQUE TOURNANT 

R&me-011 etudle les effets de la stratification stable sur l’scoulement permanent lamlmure d’un Hulde 
visqueux dans un espace annulaire sphtrique tournant. Les configurations rotationnelles sont discutkes: 
sphere interne tournant et sphire externc au repos; sph2re interne fixe et sph8re externe cn rotation: et les 
deux sphCres toutnant en sens inverse. Les calculs concernent les circulations primaire et secondaire, la 
distribution des temperatures et les caracteristiques du transfert thermique. On montre que les forces de 
pesanteur son: sensibles par la rtduction de I’intensite de la circulation secondaire et, dans un cas. tile 

provoque I’appatition d’une nouvelle configuration. 

DER EINFLUSS STABILER SCHICHTljNG AUF DIE STRGMUNG 
IN EINEM ROTIERENDEN SPHARISCHEN RINGRAUM 

Zusammenfassung- Es wurdendie Wirkungen einer stabilen Schichtung auf die stationare laminare 
StrBmung eines viskosen Fluids in einem rotierenden sphgrischen Ringraum untersucht. Drei Arten de1 
Drehbewegung wurden behandelt: innere Kugel rotierend bei tuhender LuReret Kugel: innere Kugel ruhend 
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bei rotierender luBerer Kugel ; und beide Kugeln in entgegengesetzter Richtung rotierend. Berechnet wurden 
die Prim&- und Sekundarwirbel, die Temperatur-verteilung, die Warmeiibertragungseigenschaften der 
Stromung. Es stellte sich heraus, da13 die Auftriebskriifte die Intensitlt der Sekundarwirbel abschwlchen und 

in einem Fall ein neues Zirkulationsmuster hervorbrachten. 

BIIMJ7HME YCTOl?YMBOfi CTPATMQMKAUMM HA fiBMXEHME XKMAKOCTM 
BO BPAlQAIOUEMCIl C@EPMYECKOM KOJIbUEBOM KAHAJIE 

AHHoTauHn- B pa6ore HCCneiIOBaHO BnRRHHe yCTOk~iB0fi CTpaTH@)HKaUHH Ha CTauRoHapHoe 

naMHHapHoe TeqeHwe BR~KOA ~KR~KoCTH ~0 spamamuebm KonbUeBoM kariane. PaccMorpeno TPM 

CJlyYaR: BHyTpeHHWl C@epa BpaUIaeTCn, HapyxHaR HenOLlBN)KHa; BHyTpeHnR Cf$epa HenOLlEH~Ha, 

HapywcHaa epauaercn; o6e c@epbl BpaualoTcR B npoTHBononomblx Hanpamewmx. FIpoBeneA 

WCJleHHblti aHanH3 nepBWiHbfX M BTOpRqHblX TeYeHd, noneA reMneparyp H rennoo6h4emibrx 
XapaKTepWTHK nOTOKa. flOKa3aH0, 'IT0 nOI,beMHble CIlJTbI CHWKalOT MHTeHCHBHOCTb BTOpH'IHOfi 

UHpKyJlRUHM,a B OLIHOM CJlyYae Bbl3blBaWT nOSlBneHHe HOBOfi LI~pKyJVlU~OHHO8 CTpyKTypbl. 


