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Abstract—The effects of stable stratification on the steady laminar flow of a viscous fluid in a rotating
spherical annulus are investigated. Three rotational configurations are discussed: inner sphere rotating,
outer sphere at rest; inner sphere at rest, outer sphere rotating; and both spheres rotating in opposite
directions. The calculations include the primary and secondary circulations, the temperature distribution,
and the heat-transfer characteristics of the flow. It is shown that the buoyancy forces are effective in reducing

the intensity of the secondary circulation, and in one case cause a new circulation pattern to appear.

NOMENCLATURE
C,,  specific heat at constant pressure;
D, differential operator ;
o angular velocity expansion function;
Gons stream function expansion function;
do»  gravitational acceleration;
Gr,  Grashof number g, 8(T; — T )R3/v?;
h,, temperature expansion function ;
k, thermal conductivity;
P,,  nth order Legendre polynomial;
Pr,  Prandtl number pC,/k;
q, local heat flux;
0, total heat flux;
q.,, local conduction heat flux;
Q..  total conduction heat flux;
r, dimensionless radial coordinate ;
7, radial coordinate;
Re,  Reynolds number R2w,/v;
Ry, inner sphere radius;
R,, outer sphere radius;’
T, temperature distribution;
T,,  inner sphere temperature;
T, outer sphere temperature ;
V., radial velocity component ;
Vs, latitudinal velocity component ;
V,,  azimuthal velocity component;
V2, Laplacian operator.
Greek symbols
B, coefficient of volume expansion;
L, dimensionless temperature distribution ;
7, radius ratio R,/R,;
0, co-latitude ;
U, absolute viscosity ;
a angular velocity ratio w,/w, ;
v, kinematic viscosity ;

?, azimuthal angle ;

v, stream function;

, rotation function;

wg, characteristic time scale;

@y, inner sphere angular velocity;
w,, outer sphere angular velocity;
Q, angular velocity function.

1. INTRODUCTION

THE FLOW in a rotating spherical annulus has been
extensively studied over the past three decades because
of the many geophysical applications. The earliest
workers (Howarth [1], Proudman [2], Greenspan [3],
and Carrier [4]) were primarily interested in the effects
of rotation, and employed methods which were
generally of a singular perturbation or boundary-layer
character.Their descriptions of the important dynami-
cal mechanisms were subsequently confirmed by
Pearson’s [5] numerical calculations. In particular,
Proudman’s [2] cylindrical shear layer was shown to
exist not only for nearly rigid rotations but also when
one sphere rotates while the other remains at rest.
Later Munson [6] did a rather detailed numerical
study of the steady flows for all Reynolds numbers up
to transition. He also examined the stability of these
flows [7].

Progress on the problem of stratified rotating flows
in this geometry has followed a similar pattern.
Barcilon and Pedlosky [8] constructed a linear theory
for cylindrical geometries and clarified the role of the
Ekman boundary layer in the limits of weak and
strong stable stratification. Later they presented a
unified theory [9] which included intermediate stratifi-
cations. Their analysis demonstrated that the stably
stratified flows could be organized according to the
value of the stratification, defined as the product of the
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Prandt] number and the stratification parameter. For
example, values of the stratification greater than the
square root of the Ekman number result in flows for
which the Ekman layers are weak or absent. Pedlosky
[10] analyzed the stably stratified problem in the
spherical annulus using a linearized theory, and poin-
ted out that the effective stratification increases as the
cquator is approached because the local rotation
depends on the latitude. Further work on the stratified
problem in cylindrical geometries has been reported
by Allen [ 11, 12], including numerical solutions to the
nonlinear problem [ 13]. The latter work explored the
effects of different boundary conditions on flows with
strong stable stratification and verified the predictions
ofthe linear theories. Douglass, Munson, and Shaugh-
nessy [14] explored the unstably stratified flows in
the rotating spherical annulus using both perturbation
and numerical methods. A wide variety of rotational
and geometrical configurations were examined, and
the unstable stratification was shown to have a
profound influence on the meridional circulation. The
heat-transfer characteristics of these flows were also
discussed.

The work presented here was motivated by the
desire to explore the effects of geometry and non-
linearities on the stably stratified problem in the
rotating spherical annulus. Solutions are presented for
three different configurations: inner sphere rotating,
ouler sphere at rest; inner sphere at rest, outer sphere
rotating ; and both spheres rotating, but in opposite
directions. The results include the primary and secon-
dary velocity fields, the temperature distribution, and
the heat-transfer characteristics of the flow. Inall of the
flows considered, the stable stratification retards the
mechanically driven circulation as the stratification
increases. In one flow, however, intermediate stratifi-
cations are characterized by an additional secondary
circulation which is opposite to the circulation in-
duced by the rotation. The strength of this new
secondary motion grows to a value comparable to the

F1G. 1. Flow geometry.
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primary motion then begins to decay as the stratifi-
cation increases. An explanation of this phenomenon
is given in terms of the spin-up by the mechanical
circulation of hot fluid trapped in a buoyancy layer. in
all cases considered, the heat transfer across the
annulus decreases with increasing stratification. but
the precise rate of this decrease varies depending on the
rotational configuration.

2. ANALYSIS

We consider the motion of a Newtonian fluid in i
concentric spherical annulus as shown in Fig. 1. The
rigid bounding spheres rotate steadily at rates m, and
w, about a common axis. A positive rotation rate
denotes clockwise rotation looking in the direction
indicated on the polar axis. Both the magnitude and
sign of @, and w, are arbitrary: if s, and w, differ in
sign, the spheres are counter-rotating. The inner and
outer spheres have uniform temperatures T; and T,
respectively, and a uniform gravitational force of
magnitude g, is assumed to act towards the center of
the spheres.

The motion is measured in spherical coordinates (.
6. ¢} fixed in space, with (V,. ¥, V) the corresponding
velocity components. The angular coordinate ¢ is
measured from the polar axis: ¢ is the azimuthal angle.
The flow is assumed to be steady, independent of ¢,
and symmetric about 0 = /2 (the equator). The
solutions are valid in the annular region R, <+ = R,
0 <6 <nand 0 < ¢ < 2nfor arbitrary radit R, and
R, of the inner and outer spheres. Due to the assumed
symmetries in the problem, the results are presented in
the upper portion of a meridian plane only.

The dimensionless equations of motion within the
Boussinesq approximation are conveniently for-
mulated in terms of a stream function ¥, an angular
velocity function €, and a temperature function { { 14}]:

U, 1 (m qr Qe
- = e {2 IR VTR (1
Re b rsinf) ar 20 ¢t o i
L D% = —(Gr/Re?*)sin0 o
Re h / a6
i 2 QL
S B SO —sinl) o 2
T Zsing {rsin@ Q(FOS” 5 S0 ) @
o AN A
2 —« ~ 7
+D xp(\cos or 3 sin ¢/ 0 ) I
Y e < J 2t
,,,,,, i SR )1 .
+ a5 7 (D) =5 g /1)(‘
and
RePr (30 0y Ly .
TN L R L :
V= adne (C’r 000 or ) )

Here Re = Riwy/v is the Reynolds number, Gr =
goB(T, — T )R3/¥? is the Grashof number, and Pr=
uC/k is the Prandtl number. The Ekman number E
is identical to the inverse Reynolds number 1/Re, while
the stratification parameter $ is equal to Gr/Re* The
fluid properties are the kinematic viscosity v, the absolute
viscosity p, the coefficient of thermal conductivity k.
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the specific heat at constant pressure C,, and the
coefficient of thermal expansion f. The non-
dimensionalization employs R,, wg !, and (T, ~ T,) as
the characteristic length, time, and temperature scales.
If w, = 0 then w, = w,, otherwise w, = w,.

The dimensional flow variables are defined by the
relations

0
_ R, —a%—
" r*sinf
Ry, %_‘f‘
Ve rsin 0 @
_ R,m,Q
* 7 rsinf
and
T=T+(T,—T)}.
The various operators are:
~, 3 1/(d 0
D*=_5+ 5|5 —cotf+
ort ot (092 60)
)

and

1la 0 of(. @
2|8 (28 - =
v _rz[ar <r ar)+cscaae<sm(9aﬂ)].

The boundary conditions on the flow are that the
fluid temperature equals the wall temperature at the
spherical boundaries, and that the fluid velocity at the
boundaries equals the velocity of the boundaries. In
terms of the dimensionless variables these conditions
are

{(m0)=0, {(1,0)=1

0
win.0) = 91, 0) = 2 1,0)= % (1,0)= 0

(6)

and either
Q(1,8) = n2sin® 60, Q(1,0) = fzsin? B(ew, = w,),
or
Q(n,0) = (y*/it)sin? B, Q(1,6) = sin? Hw, = w,).

"The dimensionless parameters n and & which appear in
these expressions are the radius ratio of the spheres #
= R,/R,, and the angular velocity ratio i = w,/w,.

The results are represented by plots of the stream
function y, the temperature function {, and the
dimensionless rotation . The rotation is defined in
terms of the angular velocity function by

Q
© = 7o’ ™
The dimensional value of the azimuthal velocity ¥, is
V, = Ryw,0rsin 0. 8)

Lines of constant y define the secondary flow only.
To obtain a complete picture of the motion of a fluid
particle, the azimuthal velocity component must also
be considered. In a typical case, the particle path is a
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spiral on the surface of a torus in the spherical annulus.

The temperature distribution in the annulus is
represented by plots of the temperature function (.
Lines of constant { are related to the isotherms by
equation (4). For example, the line { = 0.2 represents a
temperature which exceeds the inner cylinder tempera-
ture by 20% of the overall temperature difference (7,
-T).

The heat-transfer characteristics of the flow field are
represented by the local wall heat flux g, non-
dimensionalized by the conduction heat flux g,. This
ratio is evaluated on the inner and outer spheres and
plotted as a function of 6. A measure of the overall heat
transfer is obtained by integrating the local heat flux
over either of the spherical surfaces. This total heat flux
Q is given in the form (Q/Q.— 1), which represents the
fractional increase in the total heat transfer attribut-
able to convection. Here Q, is the total heat transfer
predicted by the simple conduction solution. Compar-
ing the values of Q on the inner and outer spheres is a
convenient check on the consistency of the numerical
technique. For a steady flow in the absence of viscous
dissipation these values should be identical.

Numerical solutions to the equations of motion
were found using the method of partial spectral
expansions [15]. Only the general outline of this
procedure will be described here since further details
can be found elsewhere. The dependent variables are
assumed to have expansions of the form

Q(r, 0) = sin? 0 g: P,(8)£,(r),
n=0

N
¥, 0)=sin*0 3. P,(0)g,0) ©)

and
N
{(r,0)= ;0 Py(6) b, (r).

The expansion functions P,(f) are Legendre poly-
nomials of the first kind of order n. The sin? 8 factor in
the expansions is chosen to simplify the boundary
conditions stated in (6). To complete the solution
method, the expansions (9) are substituted into the
equations of motion, and orthogonality conditions are
applied. This reduces the original partial differential
equations to ordinary differential equations. The re-
sulting boundary-value problem is solved numerically.

3. RESULTS

Calculations were made for three different cases
corresponding to angular velocity ratios ji = 0, co, and
—1/3. The Prandtl and Reynolds numbers are 1 and
10? respectively. The results are organized according
to the value of the Grashof number which varied
between zero (no buoyancy) and 5 x 10°, These values
lead to stratification parameters in the range 0 < S
< 50. Values of S greater than 0.1 represent strong
stable stratification according to Barcilon and
Pedlosky’s [9] criteria. In the discussion that follows
the streamlines, isotherms, and local heat ftux for each
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configuration are described separately. A final section
compares the dependence of the total heat flux on the
degree of stratification.

(a) The case i =0

For ji = 0 the inner sphere is rotating steadily while
the outer sphere is at rest. The meridional circulation
pattern for Gr = 0 is counterclockwise, as shown in
Fig. 2. As aresult of increasing thermal stratification a
clockwise circulation pattern appears at the outer edge
of the annulus. The first evidence of this new con-
vection cell appears at a Grashof number of 2 x 10%,

]

FI1G. 2. Streamlines for i = 0, Gr = 0. Values shown are 10°
times .

which corresponds to a stratification of 2 in the theory
of Barcilon and Pedlosky [9]. Below this stratification,
all fluid in the annulus circulates counterclock wise. A
slight increase in the stratification causes the for-
mation of a very thin layer of fluid of opposite
circulation near the outer sphere. This layer extends
over all latitudes and initially has a depth of about 1%,
of the gap. As the Grashof number (and stratification)
increase, the new circulation cell increases in strength
and size. Figure 3 shows the circulation pattern at a
stratification of 45, at which value the clockwise
circulation is at its maximum strength. Further in-
creases in the stratification result in continual de-
creases in the strength of both convection cells.

FIG. 3. Streamlines for ji = 0, Gr = 4.5 x 10°. Values shown
are 10° times .
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This behavior, which has not been described before,
appears to be a feature of this particular rotational
configuration. With the outer sphere at rest, fluid near
this sphere feels a very weak primary motion as
cvidenced by the angular velocity contours of Fig. 4.
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Fi1G. 4. The o distribution for 4t = . Gr = 4.5 x 10°.

For strong stable stratification, buoyancy forces will
tend to resist radial motions of this fluid, causing it 1o
be trapped near the outer sphere. The rotationally
driven meridional circulation apparently controls the
circulation of this trapped buoyancy layer through
simple shear resuiting in an opposite circulation. It
would be interesting to test this hypothesis by examin-
ing the spin-up of this steady flow from a state of stable
stratification with the fluid at rest.

Although the buoyancy forces produce a remark-
able change in the meridional flow field, the isotherms
are relatively unaffected. In the forced convection case
(Gr = 0) the temperature distribution is similar to the
simple conduction solution. The maximum difference
between the two distributions is 6% of (T, — T;). As the
Grashof number increases to Gr = 4.5 x 107 this differ-
ence decreases to 0.5%, of (T, — T,). In both flows the
largest differences occur midway in the gap near the
north pole. The local wall heat flux for this flow is
shown in Fig. 5 for Gr = 0. The values of g/¢, greater
than unity on the northern half of the inner sphere
reflect the convection of warm fluid to that area by the
secondary circulation. As the fluid proceeds along the
inner sphere towards the equator its temperature
gradually drops, reducing the local heat transfer at the
wall. The heat flux falls below the conduction value
near the equator because of the deflection of the
isotherms by the circulation. Similar reasoning can be
used to explain the heat flux values on the outer sphere.
As the Grashof number increases, the local heat flux
approaches the conduction value and becomes in-
distinguishable from it for Gr = 4.5 x 10°.

(b)Y The case i = «

For ji = % the outer sphere rotates steadily while
the inner sphere is at rest. The circulation pattern
established by the rotation remains essentially un-
changed for Grashof numbers as large as 5 x 10°
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F1G. 7. Streamlines for g = o0, Gr = 2.5 x 10°, Values shown
are 10° times .

Figures 6 and 7 show the streamlines for Gr = 0 and
Gr = 2.5 x 10° respectively. Figure 6 may be compared
with Pearson’s [ 5] finite difference solution as given by
Fig. 3 of his paper. The excellent agreement confirms
the basic accuracy of the spectral method used in these
calculations. As the stratification increases the in-
tensity of the circulation is reduced but there is little
change in the basic circulation pattern. Figure 8 shows
the angular velocity distribution in the annulus for Gr
= 0. The most interesting feature of this distribution is
the character of the contours near the equator. We see
that Proudman’s [ 2] cylindrical shear layer is present
even though the Reynolds number is rather low. Many

HM.T.—F

F1G. 9. The w distribution for ji = oo, Gr = 2.5 x 10°.

investigators have exploited this characteristic by
constructing simple cylindrical laboratory models of
geophysical flows. While this is always valid in the zero
buoyancy limit, Fig. 9, which shows the rotation
contours for Gr = 2.5 x 10°, demonstrates that stable
stratification destroys this shear layer at low Reynolds
numbers.

In the present configuration, as in the previous one,
the temperature distribution is similar to that given by
the conduction solution. In the forced convection case
(Gr = 0), the largest difference in the two distributions
is 12%; of (T, — T;). This is larger than the value found
for the previous rotational configuration because the
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secondary circulation is stronger. As the Grashof
number increases, buoyancy forces retard the circula-
tion and the temperature distribution approaches the
conduction distribution. For Gr = 2.5 x 10°, the differ-
ence is down to 1.5%;, The local wall heat flux, shown
in Fig. 10 for Gr =0 also approaches the conduction
heat flux as the Grashof number increases.

F1G. 11. Streamlines for gi= —1:3, Gr =0. Values shown are
10* times 1.
+5
+I5

FIG. 12. Streamlines for = —1;3, Gr=1x10°% Values

shown are 10* times .

(c) The case i = —1/3

In the last configuration studied, the inner sphere
rotates three times as fast as the outer sphere and in the
opposite direction. The shear forces established by the
differential rotation act in opposite directions at each
boundary, resulting in a secondary motion consisting

of a pair of counter-rotating eddies. This circulation
pattern is illustrated in Fig. 11 for Gr = 0, and in Fig.
12 for Gr = 1x10° In comparison to the previous
configurations, the buoyancy forces are not as effective
in retarding the circulation. The clockwise motion is
actually enhanced by the buoyancy forces for Grashof
numbers less than 3 x 10°, which is the largest value for
which calculations were made. The buoyancy forces do
retard the counterclockwise circulation but to a lesser
degree than seen earlier. The angular velocity distri-
bution for Gr = 1 x 10% is shown in Fig. 13.

8]

—ONO W
::jjjjff?iiifﬁii{//}
-
— Y
B //
/ -~
///
" p
.4//‘//"
e /Vv/

FiG. 13. The w distribution for s = 13, Gr = | = 1(°

The temperature distribution in this case is again
similar to the conduction distribution. For G = 0 the
differences in the two distributions are 4% of (T, — T} )}
near the north pole, and 79, of (T,—T;) near the
equator. The region near the north pole contains fluid
which is warmer than conduction temperatures, while
near the equator the fluid is cooler. As the Grashof
number increases, these differences also decrease, but
at a slower rate than noted earlier. For example, for Gr
= 1 x 10°, the temperature differences are 4%, near the
north pole (but over a smaller region) and 3%, near the
equator. The local wall heat flux for this configuration
is shown in Fig. 14. The uppermost figure is for Gr = 0
and the lower figure is for Gr = 1 x 10°. The local heat
flux values on the outer sphere clearly reflect the
enhanced circulation of the clockwise eddy located
near the outer sphere. The values along the inner
sphere also demonstrate that this particular con-
figuration is relatively unaffected by stable stratifi-
cation.
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(d) Heat transfer

The heat-transfer characteristics of all three con-
figurations are summarized in Fig. 15. This plot shows
the total heat flux across either sphere as a function of
the Grashof number. The quantity (Q/Q.— 1) repre-
sents the fractional change in the total heat transfer

i0 +—

over the rate calculated for conduction only. In the
forced convection limit (Gr = 0) the value of (Q/Q,
—1) differs for each configuration according to the
effectiveness of the secondary circulation. These values
are8.1x1073,1.99 x 1072, and 1.85 x 10~ for ji = 0,
o0, and — 1/3 respectively [16]. Of most interest in this

+

+

Gr

FiG. 15. Dependence of total heat flux on the Grashof number.
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figure is the rate at which the total heat flux decreases
with increasing Grashof number. The case of counter-
rotating spheres (4 = —1/3) shows significantly less
rate of decrease in the heat-transfer rate than the other
two configurations. This is not surprising in view of the
resistance of this particular flow to the retarding action
of the buoyancy forces.

4. SUMMARY

The effects of strong stable stratification on the
steady laminar flow of a viscous fluid in a rotating
spherical annulus have been investigated. Results are
presented for three rotational configurations at a
moderate rotation rate. The primary and secondary
circulation patterns, the temperature distribution, and
the heat-transfer characteristics of each flow are
described. In all three cases, the buoyancy forces
inhibit the circulation resulting from the differential
rotation of the spheres, and reduce the overall heat
transfer. For the case of a rotating inner sphere with
the outer sphere at rest, the buoyancy forces generate a
clockwise circulation near the outer sphere. The
strength of this motion is comparable to that of the
rotationally driven circulation for intermediate Gra-
shof numbers. In the second configuration studied
(inner sphere at rest, outer sphere rotating) the buoy-
ancy forces retard the secondary circulation without
distorting it to any great degree. The primary flow field
described by the rotation « is significantly distorted by
buoyancy forces. As the Grashof number increases the
rotation contours change near the equator. The cyl-
indrical shear layer which exists at Gr = 01s destroyed
as the Grashof number increases. The last con-
figuration studied {counter-rotating spheres} proved
to be more resistant to the retarding influence of the
buoyancy forces than the previous two cases. This is
reflected in the relationship between the overall heat
transfer and the Grashof number. The overall heat-
transfer rate for the flow between counter-rotating

spheres falls off less sharply with increasing Grashof

number.
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L'EFFET DE LA STRATIFICATION STABLE SUR LE MOUVEMENT
DANS UN ESPACE ANNULAIRE SPHERIQUE TOURNANT

Résumé—On étudie les effets de la stratification stable sur I'écoulement permanent laminaire d’un fuide

visqueux dans un espace annulaire sphérique tournant. Les configurations rotationnelles sont discutées:

sphére interne tournant et sphére externe au repos; sphére interne fixe et sphére externe en rotation; et les

deux sphéres tournant en sens inverse. Les calculs concernent les circulations primaire et secondaire, la

distribution des températures et les caractéristiques du transfert thermigue. On montre que les forces de

pesanteur sont sensibles par la réduction de Fintensité de la circulation secondaire et, dans un cas, elle
provoque I'apparition d’une nouvelle configuration.

DER EINFLUSS STABILER SCHICHTUNG AUF DIE STROMUNG
IN EINEM ROTIERENDEN SPHARISCHEN RINGRAUM

Zusammenfassung—FEs wurdendie Wirkungen einer stabilen Schichtung auf die stationdre laminare
Strémung eines viskosen Fluids in einem rotierenden sphérischen Ringraum untersucht. Drei Arten der
Drehbewegung wurden behandelt: innere Kugel rotierend bei ruhender duflerer Kugel: innere Kugel ruhend
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bei rotierender duBerer Kugel ; und beide Kugeln in entgegengesetzter Richtung rotierend. Berechnet wurden

die Primir- und Sekundirwirbel, die Temperatur-verteilung, die Wirmeiibertragungseigenschaften der

Strémung. Es stellte sich heraus, daf die Aufiriebskrifte die Intensitiit der Sekundérwirbel abschwéchen und
in einem Fall ein neues Zirkulationsmuster hervorbrachten.

BJIUAHUE YCTOMUYUBOW CTPATUPHKALIMM HA IBWIKEHUME XUIAKOCTHU
BO BPAINAKIEMCA COPEPUUYECKOM KOJILLEBOM KAHAIJIE

Annorauns — B paboTe HccnenoBaHo BIHAHME YCTOWYMBON CTpaTHPUKAUMM Ha CTAUMOHApHOE
JNIAMWHapHOe TeYeHHe BA3KOH KHIKOCTH BO BpallidaloLUeMcsi KOJIbLEBOM KaHane. PaccMOTpeHO Tpu
c/lydasi: BHYTpeHHsisi chepa BpalaerTcs, HApYXXHas HEMOABHXKHA; BHYTpeHss cdepa HernonBHKHA,
HapyxHas Bpawiaetcs; obe cdepbl BpalaroTcs B HPOTHBONOJIOKHbIX HanpabieHusix. [Tposenen
YHCJEHHBI aHafM3 NEePBMYHBIX W BTOPHYHBIX TeveHHil, moJsieit TeMmepaTyp M Teni00OMEHHbIX
XapakTepucTHK noroka. [loka3aHo, YTO NOMBEMHblE CHIIBI CHHKAIOT HHTEHCHBHOCTb BTOPHMYHOM
UMPKYJISILMK, 2 B OJTHOM CJTy4Yae Bbi3bIBAIOT MOSBIEHUE HOBOW UMPKYIALMOHHON CTPYKTYDSIL.
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